616 research outputs found

    Takings in the Court of Federal Claims: Does the Court Make Takings Policy in Hage?

    Get PDF
    In the eleven western states, almost half of the land is federally owned and a large percentage of that federal land is used for grazing privately-owned domestic livestock. The Department of the Interior estimates that permitted grazing occurs on thirty-six percent of federal land, but this percentage is much higher in the areas containing more federal rangeland. In 1990, the eleven western states had approximately seventeen million beef cattle and 102,800 beef producers. Roughly eighteen percent of those beef producers had federal grazing permits, but in some states that percentage was much higher. For example, eighty-eight percent of the cattle in Idaho graze for at least part of the year on federal lands

    Manpower Planning in the Professions

    Get PDF
    Manpower planning has been the subject of discussion and heated debate for more than a decade. Proponents have claimed that planning will enhance economic growth, particularly when it relates to professional and skilled manpower.1 Opponents have claimed that such planning distorts the market and will lead to excess supply or excess demand and in either case is costly in terms of economic resources. Our objective in this paper is to outline the general issues in manpower planning, briefly look at what is being done today in Canada, and then offer some suggestions concerning directions manpower planning might take. This paper is not intended to be a comprehensive review of the subject since other studies have gone into far more depth.3 Instead, we want to raise what we consider to be the major questions concerning how and what manpower planning is done.La planification de la main-d'oeuvre se fait un sujet de discussion et de dĂ©bats animĂ©s depuis plus d'une dĂ©cennie. Les dĂ©fenseurs ont prĂ©tendu que la planification rehaussera la croissance Ă©conomique, particuliĂšrement en ce qui trait Ă  la main d'oeuvre professionnelle et qualifiĂ©e. Les adversaires ont prĂ©tendu qu'une telle planification dĂ©forme le marchĂ©, aboutira Ă  une offre excĂ©dentaire ou d une demande excĂ©dentaire et, dans les deux cas, s'avĂšre coĂ»teux en termes de ressources Ă©conomiques. L'objectif de la prĂ©sente recherche est de tracer les questions gĂ©nĂ©rales en ce qui concerne la planification de la main-d'oeuvre. Cette Ă©tude ne prĂ©tend pas ĂȘtre une revue complĂšte de la question. D'autres recherches l'approfondissent davantage. Au lieu de cela, nous voulons soulever ce que nous estimons les questions majeures: comment se fait la planification de la main-d'oeuvre? et de quoi s'agit-il

    Racing start safety: head depth and head speed during competitive starts into a water depth of 1.22 m

    Get PDF
    From the perspective of swimmer safety, there have been no quantitative 3-dimensional studies of the underwater phase of racing starts during competition. To do so, 471 starts were filmed during a meet with a starting depth of 1.22 m and block height of 0.76 m. Starts were stratified according to age (8 & U, 9–10, 11–12, 13–14, and 15 & O) and stroke during the first lap (freestyle, breaststroke, and butterfly). Dependent measures were maximum head depth, head speed at maximum head depth, and distance from the wall at maximum head depth. For all three variables, there were significant main effects for age, F(4, 456) = 12.53, p < .001, F(4, 456) = 27.46, p < .001, and F(4, 456) = 54.71, p < .001, respectively, and stroke, F(2, 456) = 16.91, p < .001, F(2, 456) = 8.45, p < .001, and F(2, 456) = 18.15, p < .001, respectively. The older swimmers performed starts that were deeper and faster than the younger swimmers and as a result, the older swimmers may be at a greater risk for injury when performing starts in this pool depth

    Racing start safety: head depth and head speed during competitive backstroke starts

    Get PDF
    Research on competitive swim start safety has focused on starts involving a dive from above the water surface. The purpose of this study was to determine the depths, speeds, and distances attained when executing backstroke starts, which begin in the water, and to investigate whether or not these variables are a function of age. Backstroke starts (n = 122) performed in 1.22 m of water during competition were stratified according to age group (8&U, 9-10, 11-12, 13-14, and 15&O). Dependent measures were maximum depth of the center of the head (MHD), head speed at maximum head depth (SPD), and distance from the wall at maximum head depth (DIST). Main effects were shown for age group for MHD (F = 8.86, p < 0.05), SPD (F = 4.64, p < 0.05), and DIST (F = 17.21, p < 0.05). Because they performed starts that were deeper and faster than the younger swimmers, the older swimmers seem to be at a greater risk for injury when performing backstroke starts in shallow water

    Water depth influences the head depth of competitive racing starts

    Get PDF
    Recent research suggests that swimmers perform deeper starts in deeper water (Blitvich, McElroy, Blanksby, Clothier, & Pearson, 2000; Cornett, White, Wright, Willmott, & Stager, 2011). To provide additional information relevant to the depth adjustments swimmers make as a function of water depth and the validity of values reported in prior literature, 11 collegiate swimmers were asked to execute racing starts in three water depths (1.53 m, 2.14 m, and 3.66 m). One-way repeated measures ANOVA revealed that the maximum depth of the center of the head was significantly deeper in 3.66 m as compared to the shallower water depths. No differences due to water depth were detected in head speed at maximum head depth or in the distance from the wall at which maximum head depth occurred. We concluded that swimmers can and do make head depth adjustments as a function of water depth. Earlier research performed in deep water may provide overestimates of maximum head depth following the execution of a racing start in water depth typical of competitive venues

    Start depth modification by adolescent competitive swimmers

    Get PDF
    To expand upon previous studies showing inexperienced high school swimmers can complete significantly shallower racing starts when asked to start “shallow,” 42 age group swimmers (6-14 years old) were filmed underwater during completion of competitive starts. Two starts (one normal and one “requested shallow”) were executed from a 0.76 m block into 1.83 m of water. Dependent measures were maximum depth of the center of the head, head speed at maximum head depth, and distance from the starting wall at maximum head depth. Statistical analyses yielded significant main effects (p < 0.05) for start type and age. The oldest swimmers’ starts were deeper and faster than the youngest swimmers’ starts. When asked to start shallowly, maximum head depth decreased (0.10 m) and head speed increased (0.32 ms-1) regardless of age group. The ability of all age groups to modify start depth implies that spinal cord injuries during competitive swimming starts are not necessarily due to age-related deficits in basic motor skills

    Competitive swimmers modify racing start depth upon request

    Get PDF
    To expand upon recent findings showing that competitive swimmers complete significantly shallower racing starts in shallower pools, 12 more experienced and 13 less experienced swimmers were filmed underwater during completion of competitive starts. Two starts (1 routine and 1 “requested shallow”) were executed from a 0.76 m block height into water 3.66 m deep. Dependent measures were maximum head depth, head speed at maximum head depth, and distance from the starting wall at maximum head depth. Statistical analyses yielded significant main effects (p < 0.05) for both start type and swimmer experience. Starts executed by the more experienced swimmers were deeper and faster than those executed by the less experienced swimmers. When asked to dive shallowly, maximum head depth decreased (0.19 m) and head speed increased (0.33 ms-1) regardless of experience. The ability of all swimmers to modify start depth implies that spinal cord injuries during competitive swimming starts are not necessarily due to an inherent inability to control the depth of the start

    Block height influences the head depth of competitive racing starts

    Get PDF
    The purpose of this study was to determine whether or not starting block height has an effect on the head depth and head speed of competitive racing starts. Eleven experienced, collegiate swimmers executed competitive racing starts from three different starting heights: 0.21 m (pool deck), 0.46 m (intermediate block), and 0.76 m (standard block). One-way repeated measures ANOVA indicated that starting height had a significant effect on the maximum depth of the center of the head, head speed at maximum head depth, and distance from starting wall at maximum head depth. Racing starts from the standard block and pool deck were significantly deeper, faster, and farther at maximum head depth than starts from the intermediate block. There were no differences between depth, speed, or distance between the standard block and pool deck. We conclude that there is not a positive linear relationship between starting depth and starting height, which means that starts do not necessarily get deeper as the starting height increases

    Racing start safety: head depth and head speed during competitive swim starts into a water depth of 2.29m

    Get PDF
    The head depths and head speeds of swimmers attained following the execution of racing starts during competition have not been well described. To address this, 211 competitive starts were filmed into a starting depth of 2.29 m with a block height of 0.76 m. Starts were stratified according to age, sex, stroke, and swim meet. Dependent measures were maximum depth of the center of the head, head speed at maximum head depth, and distance from the wall at maximum head depth. Significant main effects existed for age for all three measures: F(1, 106) = 13.33, p < .001, F(1, 106) = 18.60, p < .001 and F(1, 106) = 70.59, p < .001, respectively. There was a significant age by sex interaction, F(1, 106) = 5.36, p = 0.023, for head speed. In conclusion, older swimmers performed starts that were deeper and faster than younger swimmers and nearly all starts exceeded the threshold speeds for injury. As compared to starts previously reported into 1.22 m, starts were deeper, slower, and farther from the starting wall at maximum head depth
    • 

    corecore